LogoLogo
  • INTRODUCTION
  • LEARN
    • Espresso in the Modular Stack
    • The Espresso Network
      • System Overview
      • Properties of HotShot
        • EspressoDA
          • How It Works
      • Interfaces
        • Espresso ↔ Rollup
        • Espresso ↔ L1
        • Rollup ↔ L1
      • Internal Functionality
        • Espresso Node
        • Light Client Contract
        • Fee Token Contract
        • Stake Table
          • How the Stake Table Contract Works
        • Smart Contract Upgradeability
    • Rollup Stacks
      • Integrating a ZK Rollup
        • ZK Rollup Architecture
        • Using Espresso
        • Summary of Changes
      • Integrating an Optimistic Rollup
        • Optimistic Rollup Architecture
        • Using Espresso
        • Summary of Changes
  • Guides
    • Using the Espresso Network
      • Integrating Arbitrum Orbit Chain
        • Quickstart with Arbitrum Nitro Rollups
        • Reading Confirmations from the Espresso Network
        • Arbitrum Nitro Integration Overview
          • Using TEE with Nitro
          • Arbitrum Nitro Trust & Liveness Dependencies
        • Migrating Arbitrum Orbit Chains to Espresso
          • Arbitrum Testnet
            • Nitro Testnet
            • Local Deployment (`docker compose`)
      • Using the Espresso Network as a Cartesi application
    • Running an Espresso Node
    • Running a Builder
    • Bridging with the Espresso Network
  • API Reference
    • Espresso API
      • Status API
      • Catchup API
      • Availability API
      • Node API
      • State API
      • Events API
      • Submit API
      • Earlier Versions
        • v0
          • Status API
          • Catchup API
          • Availability API
          • Node API
          • State API
          • Events API
          • Submit API
    • Builder API
  • Releases
    • Mainnet 1
      • Running a Mainnet 1 Node
      • Contracts
      • Rollup Migration Guide
    • Mainnet 0
      • Running a Mainnet 0 Node
      • Contracts
    • Testnets
      • Decaf Testnet Release
        • Running a Node
        • Contracts
      • Cappuccino Testnet Release
        • Running a Node
        • Deploying a Rollup on Cappuccino
        • Benchmarks
      • Gibraltar Testnet Release
        • Interacting with Gibraltar
        • Arbitrum Nitro integration
        • Deploying a Rollup on Gibraltar
      • Cortado Testnet Release
        • Interacting with Cortado
        • OP Stack Integration
          • Optimism Leader Election RFP
      • Doppio Testnet Release
        • Interacting with Doppio
        • Polygon zkEVM Stack Integration
        • Minimal Rollup Example
        • Benchmarks
      • Americano Testnet Release
  • Appendix
    • Interacting with L1
      • Trustless Sync
      • Fork Recovery
      • Bridging
    • Glossary of Key Terms
Powered by GitBook
On this page
  1. Appendix
  2. Interacting with L1

Bridging

PreviousFork RecoveryNextGlossary of Key Terms

Last updated 1 year ago

Rollup state updates facilitate interoperability between the layer 1 and the rollup. If the state of the rollup is verified and stored by the layer 1, then the layer 1 can also validate claims against that state, such as a claim that some tokens have been deposited into a bridge contract on the rollup. The L1 can also write to the state which is maintained by the L1, and the rollup can thus receive messages and tokens from the L1.

This is the idea used by the , which uses to bridge ETH between the layer 1 and layer 2. In this design, part of the L1 state, a Merkle tree of messages to be sent to the L2, is represented directly in the L2 VM semantics. Since the canonical execution of L2 transactions happens in a smart contract on the L1, this executor is able to read from the appropriate L1 state when executing operations in the L2 VM.

LX-to-LY bridge
Polygon zkEVM