LogoLogo
  • INTRODUCTION
  • LEARN
    • Espresso in the Modular Stack
    • The Espresso Network
      • System Overview
      • Properties of HotShot
        • EspressoDA
          • How It Works
      • Interfaces
        • Espresso ↔ Rollup
        • Espresso ↔ L1
        • Rollup ↔ L1
      • Internal Functionality
        • Espresso Node
        • Light Client Contract
        • Fee Token Contract
        • Stake Table
          • How the Stake Table Contract Works
        • Smart Contract Upgradeability
    • Rollup Stacks
      • Integrating a ZK Rollup
        • ZK Rollup Architecture
        • Using Espresso
        • Summary of Changes
      • Integrating an Optimistic Rollup
        • Optimistic Rollup Architecture
        • Using Espresso
        • Summary of Changes
  • Guides
    • Using the Espresso Network
      • Integrating Arbitrum Orbit Chain
        • Quickstart with Arbitrum Nitro Rollups
        • Reading Confirmations from the Espresso Network
        • Arbitrum Nitro Integration Overview
          • Using TEE with Nitro
          • Arbitrum Nitro Trust & Liveness Dependencies
        • Migrating Arbitrum Orbit Chains to Espresso
          • Arbitrum Testnet
            • Nitro Testnet
            • Local Deployment (`docker compose`)
      • Using the Espresso Network as a Cartesi application
    • Running an Espresso Node
    • Running a Builder
    • Bridging with the Espresso Network
  • API Reference
    • Espresso API
      • Status API
      • Catchup API
      • Availability API
      • Node API
      • State API
      • Events API
      • Submit API
      • Earlier Versions
        • v0
          • Status API
          • Catchup API
          • Availability API
          • Node API
          • State API
          • Events API
          • Submit API
    • Builder API
  • Releases
    • Mainnet 1
      • Running a Mainnet 1 Node
      • Contracts
      • Rollup Migration Guide
    • Mainnet 0
      • Running a Mainnet 0 Node
      • Contracts
    • Testnets
      • Decaf Testnet Release
        • Running a Node
        • Contracts
      • Cappuccino Testnet Release
        • Running a Node
        • Deploying a Rollup on Cappuccino
        • Benchmarks
      • Gibraltar Testnet Release
        • Interacting with Gibraltar
        • Arbitrum Nitro integration
        • Deploying a Rollup on Gibraltar
      • Cortado Testnet Release
        • Interacting with Cortado
        • OP Stack Integration
          • Optimism Leader Election RFP
      • Doppio Testnet Release
        • Interacting with Doppio
        • Polygon zkEVM Stack Integration
        • Minimal Rollup Example
        • Benchmarks
      • Americano Testnet Release
  • Appendix
    • Interacting with L1
      • Trustless Sync
      • Fork Recovery
      • Bridging
    • Glossary of Key Terms
Powered by GitBook
On this page
  1. LEARN
  2. The Espresso Network
  3. Internal Functionality

Smart Contract Upgradeability

PreviousHow the Stake Table Contract WorksNextRollup Stacks

Last updated 1 year ago

The following smart contracts are upgradeable:

These contracts use the universally upgradeable proxy pattern (UUPS) to make it possible to upgrade functionality in the contract, e.g., adding a new method for a future launch.

How it works

A proxy contract directs calls to the implementation contract, which contains the logic of the system.

When an upgrade is needed, a new implementation contract is deployed and the proxy contract's storage is updated so that it will now route requests to the new implementation. This allows for modifications to be made without affecting the state stored in the contract. Espresso users can continue interacting with the same contract address (the address of the proxy) to access the updated functionalities of the implementation contract. Careful consideration will be made to ensure backward compatibility and data consistency during the upgrade process.

LightClient
FeeContract